Skip to contents

This function summarises posterior predictives for observed data (by report and reference date). The functionality of this function can be used directly on the output of epinowcast() using the supplied summary.epinowcast() method.

Usage

enw_pp_summary(fit, diff_obs, probs = c(0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95))

Arguments

fit

A cmdstanr fit object.

diff_obs

A data.frame of observed data with at least a date variable reference_date, and a grouping variable .group.

probs

A vector of numeric probabilities to produce quantile summaries for. By default these are the 5%, 20%, 80%, and 95% quantiles which are also the minimum set required for plotting functions to work.

Value

A data.table summarising the posterior predictions.

Examples

fit <- enw_example("nowcast")
enw_pp_summary(fit$fit[[1]], fit$new_confirm[[1]], probs = c(0.5))
#>      reference_date report_date .group max_confirm location age_group confirm
#>              <IDat>      <IDat>  <num>       <int>   <fctr>    <fctr>   <int>
#>   1:     2021-07-13  2021-07-13      1          59       DE       00+      21
#>   2:     2021-07-13  2021-07-14      1          59       DE       00+      33
#>   3:     2021-07-13  2021-07-15      1          59       DE       00+      36
#>   4:     2021-07-13  2021-07-16      1          59       DE       00+      40
#>   5:     2021-07-13  2021-07-17      1          59       DE       00+      43
#>  ---                                                                         
#> 626:     2021-08-20  2021-08-21      1         171       DE       00+     159
#> 627:     2021-08-20  2021-08-22      1         171       DE       00+     171
#> 628:     2021-08-21  2021-08-21      1         112       DE       00+      69
#> 629:     2021-08-21  2021-08-22      1         112       DE       00+     112
#> 630:     2021-08-22  2021-08-22      1          45       DE       00+      45
#>      cum_prop_reported delay new_confirm prop_reported   mean median        sd
#>                  <num> <num>       <int>         <num>  <num>  <num>     <num>
#>   1:         0.3559322     0          21    0.35593220 19.639     19  8.642649
#>   2:         0.5593220     1          12    0.20338983 20.812     19  9.566932
#>   3:         0.6101695     2           3    0.05084746  6.137      6  3.627311
#>   4:         0.6779661     3           4    0.06779661  4.147      4  2.595019
#>   5:         0.7288136     4           3    0.05084746  2.396      2  1.842438
#>  ---                                                                          
#> 626:         0.9298246     1          61    0.35672515 79.760     76 31.667100
#> 627:         1.0000000     2          12    0.07017544 12.362     11  6.193328
#> 628:         0.6160714     0          69    0.61607143 74.098     70 30.701090
#> 629:         1.0000000     1          43    0.38392857 47.543     43 22.022605
#> 630:         1.0000000     0          45    1.00000000 40.036     37 18.937617
#>          mad   q50      rhat  ess_bulk  ess_tail
#>        <num> <num>     <num>     <num>     <num>
#>   1:  8.8956    19 0.9998578  950.1480  983.7776
#>   2:  8.8956    19 0.9996637  806.5805  667.5845
#>   3:  2.9652     6 1.0032698  967.3662 1001.0476
#>   4:  2.9652     4 0.9991688 1110.2815  975.4648
#>   5:  1.4826     2 0.9996678  896.9374  922.8697
#>  ---                                            
#> 626: 31.1346    76 1.0003079 1054.6289  881.3948
#> 627:  5.9304    11 1.0025396  998.3479 1035.5098
#> 628: 29.6520    70 0.9988369 1194.4760 1028.2922
#> 629: 19.2738    43 1.0010545 1154.8141  814.1646
#> 630: 17.7912    37 0.9993409 1159.6413  855.4762