Skip to contents

summary method for class "epinowcast".

Usage

# S3 method for class 'epinowcast'
summary(
  object,
  type = c("nowcast", "nowcast_samples", "fit", "posterior_prediction"),
  max_delay = object$max_delay,
  ...
)

Arguments

object

A data.table output from epinowcast().

type

Character string indicating the summary to return; enforced by base::match.arg(). Supported options are:

max_delay

Maximum delay to which nowcasts should be summarised. Must be equal (default) or larger than the modelled maximum delay. If it is larger, then nowcasts for unmodelled dates are added by assuming that case counts beyond the modelled maximum delay are fully observed.

...

Additional arguments passed to summary specified by type.

Value

A summary data.frame

See also

summary epinowcast

Other epinowcast: epinowcast(), plot.epinowcast()

Examples

nowcast <- enw_example("nowcast")

# Summarise nowcast posterior
summary(nowcast, type = "nowcast")
#>     reference_date report_date .group max_confirm location age_group confirm
#>             <IDat>      <IDat>  <num>       <int>   <fctr>    <fctr>   <int>
#>  1:     2021-08-03  2021-08-22      1         149       DE       00+     149
#>  2:     2021-08-04  2021-08-22      1         166       DE       00+     166
#>  3:     2021-08-05  2021-08-22      1         133       DE       00+     133
#>  4:     2021-08-06  2021-08-22      1         137       DE       00+     137
#>  5:     2021-08-07  2021-08-22      1         139       DE       00+     139
#>  6:     2021-08-08  2021-08-22      1          97       DE       00+      97
#>  7:     2021-08-09  2021-08-22      1          58       DE       00+      58
#>  8:     2021-08-10  2021-08-22      1         175       DE       00+     175
#>  9:     2021-08-11  2021-08-22      1         233       DE       00+     233
#> 10:     2021-08-12  2021-08-22      1         237       DE       00+     237
#> 11:     2021-08-13  2021-08-22      1         204       DE       00+     204
#> 12:     2021-08-14  2021-08-22      1         189       DE       00+     189
#> 13:     2021-08-15  2021-08-22      1         125       DE       00+     125
#> 14:     2021-08-16  2021-08-22      1          98       DE       00+      98
#> 15:     2021-08-17  2021-08-22      1         242       DE       00+     242
#> 16:     2021-08-18  2021-08-22      1         223       DE       00+     223
#> 17:     2021-08-19  2021-08-22      1         202       DE       00+     202
#> 18:     2021-08-20  2021-08-22      1         171       DE       00+     171
#> 19:     2021-08-21  2021-08-22      1         112       DE       00+     112
#> 20:     2021-08-22  2021-08-22      1          45       DE       00+      45
#>     reference_date report_date .group max_confirm location age_group confirm
#>     cum_prop_reported delay prop_reported    mean median         sd     mad
#>                 <num> <num>         <num>   <num>  <num>      <num>   <num>
#>  1:                 1    19   0.000000000 149.000    149   0.000000  0.0000
#>  2:                 1    18   0.000000000 167.426    167   1.316912  1.4826
#>  3:                 1    17   0.000000000 135.812    136   1.867121  1.4826
#>  4:                 1    16   0.000000000 141.255    141   2.341679  2.2239
#>  5:                 1    15   0.007194245 145.884    146   3.085460  2.9652
#>  6:                 1    14   0.000000000 103.681    103   3.072243  2.9652
#>  7:                 1    13   0.000000000  62.762     62   2.461588  1.4826
#>  8:                 1    12   0.000000000 185.138    185   3.827742  4.4478
#>  9:                 1    11   0.000000000 255.903    255   6.410514  5.9304
#> 10:                 1    10   0.004219409 267.488    267   7.975931  7.4130
#> 11:                 1     9   0.000000000 236.164    236   8.459235  8.8956
#> 12:                 1     8   0.015873016 230.867    230  10.092332 10.3782
#> 13:                 1     7   0.040000000 165.026    165  10.254095 10.3782
#> 14:                 1     6   0.010204082 129.307    128   8.532969  8.8956
#> 15:                 1     5   0.012396694 292.749    292  11.792076 11.8608
#> 16:                 1     4   0.017937220 293.296    292  15.992941 14.8260
#> 17:                 1     3   0.019801980 291.404    290  19.436887 19.2738
#> 18:                 1     2   0.070175439 295.703    292  28.861250 28.1694
#> 19:                 1     1   0.383928571 309.456    304  51.295236 47.4432
#> 20:                 1     0   1.000000000 381.243    371 103.890978 96.3690
#>     cum_prop_reported delay prop_reported    mean median         sd     mad
#>         q5   q20   q35   q50   q65   q80    q95      rhat  ess_bulk  ess_tail
#>      <num> <num> <num> <num> <num> <num>  <num>     <num>     <num>     <num>
#>  1: 149.00 149.0   149   149   149 149.0 149.00        NA        NA        NA
#>  2: 166.00 166.0   167   167   168 168.0 170.00 0.9988498  997.2790  946.6047
#>  3: 133.00 134.0   135   136   136 137.0 139.00 0.9997035 1015.7372 1017.4859
#>  4: 138.00 139.0   140   141   142 143.0 145.00 1.0017705  901.5890  958.7197
#>  5: 141.00 143.0   144   146   147 148.0 151.05 0.9984520 1097.0842 1044.2543
#>  6:  99.00 101.0   102   103   105 106.0 109.00 0.9997410 1034.2365  913.6061
#>  7:  59.00  61.0    62    62    63  65.0  67.00 0.9987681 1012.1885  904.7496
#>  8: 180.00 182.0   183   185   186 188.0 192.00 1.0064762  885.6025  907.2186
#>  9: 246.00 250.0   253   255   258 261.0 267.00 1.0014583  933.4472  918.6322
#> 10: 255.00 261.0   264   267   270 274.0 281.00 1.0052639 1044.4533 1055.2781
#> 11: 223.00 229.0   232   236   239 243.0 252.00 1.0041063 1039.8102  897.5389
#> 12: 216.00 222.0   226   230   234 239.0 249.00 1.0026046 1018.9795  919.8161
#> 13: 149.95 156.8   160   165   168 173.0 183.00 0.9991933 1090.1636  782.0808
#> 14: 116.00 122.0   126   128   132 136.0 144.05 1.0000500 1023.7823  888.2873
#> 15: 275.00 283.0   288   292   297 303.0 313.00 0.9993709 1145.8224  968.8335
#> 16: 270.00 280.0   286   292   298 306.0 320.00 1.0008511 1056.0595  914.9342
#> 17: 263.00 274.0   284   290   298 306.0 325.00 0.9992936 1248.9469  968.8798
#> 18: 254.95 271.0   282   292   304 319.0 348.00 1.0008356 1412.5892 1036.8252
#> 19: 237.00 266.8   285   304   323 349.0 406.00 0.9988372 1195.0907  985.8485
#> 20: 240.85 293.8   332   371   405 459.2 569.05 0.9993392 1349.1168 1029.2555
#>         q5   q20   q35   q50   q65   q80    q95      rhat  ess_bulk  ess_tail

# Nowcast posterior samples
summary(nowcast, type = "nowcast_samples")
#>        reference_date report_date .group max_confirm location age_group confirm
#>                <IDat>      <IDat>  <num>       <int>   <fctr>    <fctr>   <int>
#>     1:     2021-08-03  2021-08-22      1         149       DE       00+     149
#>     2:     2021-08-03  2021-08-22      1         149       DE       00+     149
#>     3:     2021-08-03  2021-08-22      1         149       DE       00+     149
#>     4:     2021-08-03  2021-08-22      1         149       DE       00+     149
#>     5:     2021-08-03  2021-08-22      1         149       DE       00+     149
#>    ---                                                                         
#> 19996:     2021-08-22  2021-08-22      1          45       DE       00+      45
#> 19997:     2021-08-22  2021-08-22      1          45       DE       00+      45
#> 19998:     2021-08-22  2021-08-22      1          45       DE       00+      45
#> 19999:     2021-08-22  2021-08-22      1          45       DE       00+      45
#> 20000:     2021-08-22  2021-08-22      1          45       DE       00+      45
#>        cum_prop_reported delay prop_reported .chain .iteration .draw sample
#>                    <num> <num>         <num>  <int>      <int> <int>  <num>
#>     1:                 1    19             0      1          1     1    149
#>     2:                 1    19             0      1          2     2    149
#>     3:                 1    19             0      1          3     3    149
#>     4:                 1    19             0      1          4     4    149
#>     5:                 1    19             0      1          5     5    149
#>    ---                                                                     
#> 19996:                 1     0             1      2        496   996    232
#> 19997:                 1     0             1      2        497   997    470
#> 19998:                 1     0             1      2        498   998    343
#> 19999:                 1     0             1      2        499   999    436
#> 20000:                 1     0             1      2        500  1000    295

# Nowcast model fit
summary(nowcast, type = "fit")
#>                    variable          mean        median          sd        mad
#>                      <char>         <num>         <num>       <num>      <num>
#>   1:                   lp__ -1374.3525400 -1374.0950000   7.1009648  7.2721530
#>   2: expr_lelatent_int[1,1]     4.1885861     4.1918800   0.1738342  0.1710105
#>   3:           expr_beta[1]     0.2846248     0.2950950   0.5786645  0.5786297
#>   4:           expr_beta[2]    -0.2982401    -0.3058425   0.5611535  0.5248785
#>   5:           expr_beta[3]    -0.8032542    -0.7860690   0.5592632  0.5652835
#>  ---                                                                          
#> 852:       pp_inf_obs[16,1]   293.2960000   292.0000000  15.9929409 14.8260000
#> 853:       pp_inf_obs[17,1]   291.4040000   290.0000000  19.4368870 19.2738000
#> 854:       pp_inf_obs[18,1]   295.7030000   292.0000000  28.8612502 28.1694000
#> 855:       pp_inf_obs[19,1]   309.4560000   304.0000000  51.2952363 47.4432000
#> 856:       pp_inf_obs[20,1]   381.2430000   371.0000000 103.8909779 96.3690000
#>                 q5           q20           q80          q95      rhat  ess_bulk
#>              <num>         <num>         <num>        <num>     <num>     <num>
#>   1: -1386.2875000 -1380.1600000 -1368.1580000 -1363.866500 1.0058262  262.7601
#>   2:     3.8995390     4.0461980     4.3313800     4.467335 1.0125766 1290.3349
#>   3:    -0.6218335    -0.2326572     0.7502220     1.248866 1.0012756 1404.7190
#>   4:    -1.2319820    -0.7325690     0.1550816     0.634257 1.0002675 1539.8589
#>   5:    -1.7333510    -1.2830000    -0.3354522     0.079845 1.0039448 1380.2039
#>  ---                                                                           
#> 852:   270.0000000   280.0000000   306.0000000   320.000000 1.0008511 1056.0595
#> 853:   263.0000000   274.0000000   306.0000000   325.000000 0.9992936 1248.9469
#> 854:   254.9500000   271.0000000   319.0000000   348.000000 1.0008356 1412.5892
#> 855:   237.0000000   266.8000000   349.0000000   406.000000 0.9988372 1195.0907
#> 856:   240.8500000   293.8000000   459.2000000   569.050000 0.9993392 1349.1168
#>       ess_tail
#>          <num>
#>   1:  446.8772
#>   2:  845.7893
#>   3:  856.3218
#>   4:  702.7720
#>   5:  862.2779
#>  ---          
#> 852:  914.9342
#> 853:  968.8798
#> 854: 1036.8252
#> 855:  985.8485
#> 856: 1029.2555

# Posterior predictions
summary(nowcast, type = "posterior_prediction")
#>      reference_date report_date .group max_confirm location age_group confirm
#>              <IDat>      <IDat>  <num>       <int>   <fctr>    <fctr>   <int>
#>   1:     2021-07-13  2021-07-13      1          59       DE       00+      21
#>   2:     2021-07-13  2021-07-14      1          59       DE       00+      33
#>   3:     2021-07-13  2021-07-15      1          59       DE       00+      36
#>   4:     2021-07-13  2021-07-16      1          59       DE       00+      40
#>   5:     2021-07-13  2021-07-17      1          59       DE       00+      43
#>  ---                                                                         
#> 626:     2021-08-20  2021-08-21      1         171       DE       00+     159
#> 627:     2021-08-20  2021-08-22      1         171       DE       00+     171
#> 628:     2021-08-21  2021-08-21      1         112       DE       00+      69
#> 629:     2021-08-21  2021-08-22      1         112       DE       00+     112
#> 630:     2021-08-22  2021-08-22      1          45       DE       00+      45
#>      cum_prop_reported delay new_confirm prop_reported   mean median        sd
#>                  <num> <num>       <int>         <num>  <num>  <num>     <num>
#>   1:         0.3559322     0          21    0.35593220 19.818     18  8.997768
#>   2:         0.5593220     1          12    0.20338983 20.808     19  9.249903
#>   3:         0.6101695     2           3    0.05084746  5.894      5  3.385887
#>   4:         0.6779661     3           4    0.06779661  4.209      4  2.753707
#>   5:         0.7288136     4           3    0.05084746  2.454      2  1.870664
#>  ---                                                                          
#> 626:         0.9298246     1          61    0.35672515 80.300     75 34.009714
#> 627:         1.0000000     2          12    0.07017544 12.721     12  6.182182
#> 628:         0.6160714     0          69    0.61607143 75.275     71 32.177737
#> 629:         1.0000000     1          43    0.38392857 47.607     45 21.042085
#> 630:         1.0000000     0          45    1.00000000 40.819     38 19.833043
#>          mad    q5   q20   q35   q50   q65   q80   q95      rhat  ess_bulk
#>        <num> <num> <num> <num> <num> <num> <num> <num>     <num>     <num>
#>   1:  8.8956     8    12    15    18    22    27  36.0 1.0019355 1061.4434
#>   2:  8.8956     8    13    16    19    23    28  38.0 1.0042792  666.2820
#>   3:  2.9652     1     3     4     5     7     8  12.0 1.0005725 1045.8014
#>   4:  2.9652     1     2     3     4     5     6   9.0 0.9990272  883.7513
#>   5:  1.4826     0     1     1     2     3     4   6.0 0.9998082  968.8058
#>  ---                                                                      
#> 626: 31.1346    36    52    63    75    87   107 144.1 1.0054516 1084.5743
#> 627:  5.9304     4     8    10    12    14    17  24.0 1.0001721 1002.8719
#> 628: 29.6520    32    49    59    71    82   100 137.0 1.0006111 1053.0376
#> 629: 19.2738    19    30    38    45    52    64  86.0 1.0053457  947.7744
#> 630: 17.7912    16    25    31    38    45    55  76.0 0.9990299 1049.2785
#>      ess_tail
#>         <num>
#>   1: 992.3891
#>   2: 963.7879
#>   3: 911.8297
#>   4: 983.1110
#>   5: 951.5574
#>  ---         
#> 626: 947.1035
#> 627: 967.7479
#> 628: 977.8959
#> 629: 832.7111
#> 630: 994.5472