Skip to contents

A generic wrapper around posterior::summarise_draws() with opinionated defaults.

Usage

enw_posterior(fit, variables = NULL, probs = c(0.05, 0.2, 0.8, 0.95), ...)

Arguments

fit

A cmdstanr fit object.

variables

A character vector of variables to return posterior summaries for. By default summaries for all parameters are returned.

probs

A vector of numeric probabilities to produce quantile summaries for. By default these are the 5%, 20%, 80%, and 95% quantiles which are also the minimum set required for plotting functions to work.

...

Additional arguments that may be passed but will not be used.

Value

A data.frame summarising the model posterior.

Examples

fit <- enw_example("nowcast")
enw_posterior(fit$fit[[1]], variables = "expr_beta")
#>          variable        mean      median        sd       mad         q5
#>            <char>       <num>       <num>     <num>     <num>      <num>
#>  1:  expr_beta[1]  0.28462485  0.29509500 0.5786645 0.5786297 -0.6218335
#>  2:  expr_beta[2] -0.29824007 -0.30584250 0.5611535 0.5248785 -1.2319820
#>  3:  expr_beta[3] -0.80325415 -0.78606900 0.5592632 0.5652835 -1.7333510
#>  4:  expr_beta[4]  0.44809555  0.45732650 0.5616229 0.5459552 -0.4728573
#>  5:  expr_beta[5] -0.44412108 -0.45713800 0.5151270 0.5017155 -1.2717015
#>  6:  expr_beta[6] -0.25438165 -0.26337750 0.5554739 0.5113289 -1.1240380
#>  7:  expr_beta[7]  1.71051958  1.72067000 0.5528633 0.5232318  0.8098673
#>  8:  expr_beta[8]  0.33786860  0.31259100 0.5293036 0.5297987 -0.4776585
#>  9:  expr_beta[9]  0.23446467  0.22539550 0.5212860 0.5045340 -0.6429576
#> 10: expr_beta[10] -0.36462422 -0.37648600 0.5160271 0.5015791 -1.2176160
#> 11: expr_beta[11] -0.14859906 -0.14181650 0.5138760 0.4920772 -0.9736318
#> 12: expr_beta[12] -0.57792006 -0.53897750 0.5145084 0.5146364 -1.4595760
#> 13: expr_beta[13] -1.21917671 -1.22239000 0.5563030 0.5111234 -2.1660930
#> 14: expr_beta[14]  1.54514021  1.55213500 0.5675533 0.5810309  0.6416047
#> 15: expr_beta[15]  1.76318288  1.76420500 0.5427156 0.5421646  0.8446333
#> 16: expr_beta[16] -0.20550827 -0.21182600 0.4779995 0.4717811 -0.9567022
#> 17: expr_beta[17] -0.23174271 -0.24414800 0.4694997 0.4539537 -0.9858930
#> 18: expr_beta[18] -0.18754505 -0.18813200 0.4676043 0.4385123 -0.9697473
#> 19: expr_beta[19] -0.55261198 -0.53412950 0.4703680 0.4366287 -1.3653600
#> 20: expr_beta[20] -0.34030283 -0.34179000 0.5020776 0.4885501 -1.1599075
#> 21: expr_beta[21]  1.62665535  1.60997500 0.5207666 0.4905775  0.7949809
#> 22: expr_beta[22]  0.42756972  0.42526100 0.4784881 0.4709598 -0.3434324
#> 23: expr_beta[23] -0.25828835 -0.25516650 0.4703554 0.4953085 -1.0259825
#> 24: expr_beta[24] -0.37230974 -0.36565000 0.4753320 0.4750072 -1.1500190
#> 25: expr_beta[25] -0.07612101 -0.08053165 0.4582035 0.4474568 -0.8523371
#> 26: expr_beta[26] -0.88130163 -0.87247950 0.4833402 0.4674178 -1.6579380
#> 27: expr_beta[27] -0.65837345 -0.68648300 0.5394958 0.5189374 -1.5591630
#> 28: expr_beta[28]  2.08622226  2.08300000 0.5563279 0.5491476  1.1987955
#> 29: expr_beta[29]  1.58810432  1.56012000 0.5093989 0.5226165  0.8192915
#> 30: expr_beta[30]  0.12127866  0.09202365 0.4851543 0.4777760 -0.6538401
#> 31: expr_beta[31] -0.64421710 -0.66400650 0.4889007 0.5201517 -1.4733895
#> 32: expr_beta[32] -0.25341394 -0.26969650 0.4939534 0.4792949 -1.0800925
#> 33: expr_beta[33] -0.63780395 -0.65134800 0.5066924 0.4976710 -1.4558045
#> 34: expr_beta[34] -0.14354635 -0.17152200 0.5423078 0.5453663 -1.0139625
#> 35: expr_beta[35]  1.46389603  1.47108000 0.5118771 0.5021566  0.6364592
#> 36: expr_beta[36]  0.16942632  0.15285250 0.5369581 0.5285914 -0.7309440
#> 37: expr_beta[37]  0.05247919  0.06230440 0.5687812 0.5497131 -0.9442288
#> 38: expr_beta[38]  0.10600585  0.08257225 0.6157405 0.6381570 -0.9075812
#> 39: expr_beta[39]  0.14453159  0.11814650 0.6503159 0.6026258 -0.9356451
#> 40: expr_beta[40]  0.41646368  0.42157900 0.7205522 0.7279492 -0.7860046
#>          variable        mean      median        sd       mad         q5
#>              q20         q80        q95      rhat  ess_bulk ess_tail
#>            <num>       <num>      <num>     <num>     <num>    <num>
#>  1: -0.232657200  0.75022200  1.2488665 1.0012756 1404.7190 856.3218
#>  2: -0.732569000  0.15508160  0.6342570 1.0002675 1539.8589 702.7720
#>  3: -1.283000000 -0.33545220  0.0798450 1.0039448 1380.2039 862.2779
#>  4: -0.004142558  0.92600500  1.3215800 0.9996323 1203.3461 664.4341
#>  5: -0.878409200 -0.02079704  0.3932522 1.0007057 1147.2801 866.5113
#>  6: -0.697305800  0.18103120  0.6810595 1.0097456 1156.3047 702.9367
#>  7:  1.267796000  2.15495600  2.5721150 0.9997513 1166.1734 774.4591
#>  8: -0.118038600  0.78672960  1.2221485 1.0016189 1134.8078 611.3088
#>  9: -0.191021200  0.68418780  1.0933440 1.0036997 1122.2276 486.6781
#> 10: -0.786309800  0.06987092  0.4975437 1.0004769 1223.6144 660.7525
#> 11: -0.554858200  0.26752960  0.6757380 1.0009107 1401.3103 856.0276
#> 12: -0.998188200 -0.14080160  0.2292662 1.0017892 1041.4966 642.6171
#> 13: -1.663180000 -0.78886320 -0.3142611 1.0000317 1154.3115 762.4363
#> 14:  1.071688000  2.02048000  2.4865400 0.9994620 1201.8206 609.7754
#> 15:  1.295538000  2.21468400  2.6773295 1.0010593 1159.1155 748.9531
#> 16: -0.603703600  0.18094020  0.6079322 1.0018655 1045.7084 558.2510
#> 17: -0.606814000  0.16682200  0.5377316 0.9996488  788.5439 572.9795
#> 18: -0.549881600  0.20386720  0.6024509 1.0002303  959.8177 723.9376
#> 19: -0.937218800 -0.19098520  0.1923644 1.0021605 1095.4859 852.9632
#> 20: -0.757948000  0.08590670  0.4254228 1.0064461 1055.1931 767.7107
#> 21:  1.202814000  2.04965400  2.4963815 1.0008698 1274.2689 875.5343
#> 22:  0.021378180  0.83263040  1.2398070 1.0038887 1037.8236 528.4962
#> 23: -0.687777000  0.15987640  0.4971194 0.9988418  930.6136 711.0018
#> 24: -0.767840200  0.03301844  0.3807726 0.9985956 1256.5805 665.5190
#> 25: -0.449886400  0.29412460  0.6770386 1.0058506 1320.8727 699.9874
#> 26: -1.291930000 -0.48327440 -0.1267343 1.0017966 1142.9828 890.5797
#> 27: -1.094310000 -0.19014860  0.2589386 1.0053194 1083.8850 674.6074
#> 28:  1.596204000  2.56402600  3.0015680 1.0031514 1283.7817 761.2919
#> 29:  1.138386000  1.99792800  2.4255930 0.9993590  978.3030 613.5307
#> 30: -0.261180400  0.54152560  0.9449894 1.0007208 1279.8328 773.7010
#> 31: -1.053202000 -0.20406940  0.1317774 1.0029927 1096.3248 839.4981
#> 32: -0.637252400  0.14103840  0.5597247 1.0006874  973.8768 770.2526
#> 33: -1.063976000 -0.20403380  0.2055194 1.0020892 1070.3594 734.7207
#> 34: -0.589239200  0.32723760  0.6809532 0.9992134  958.7317 795.5780
#> 35:  1.029168000  1.88105800  2.3151455 1.0005968 1125.2178 817.4606
#> 36: -0.272429800  0.61971980  1.0541715 0.9995794 1201.7405 770.6869
#> 37: -0.424746200  0.51775000  0.9824709 1.0014445 1258.3386 875.1625
#> 38: -0.426933200  0.65077880  1.1149245 0.9996211 1459.9911 821.9748
#> 39: -0.378937800  0.70247240  1.2278895 1.0025875 1667.8788 756.4348
#> 40: -0.196842200  1.02761800  1.6101840 1.0007384 1820.6056 818.3647
#>              q20         q80        q95      rhat  ess_bulk ess_tail