Skip to contents

This function summarises posterior samples for arbitrary strata. It optionally holds out the observed data (variables that are not ".draw", ".iteration", ".sample", ".chain" ) joins this to the summarised posterior.

Usage

enw_summarise_samples(
  samples,
  probs = c(0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95),
  by = c("reference_date", ".group"),
  link_with_obs = TRUE
)

Arguments

samples

A data.frame of posterior samples with at least a numeric sample variable.

probs

A vector of numeric probabilities to produce quantile summaries for. By default these are the 5%, 20%, 80%, and 95% quantiles which are also the minimum set required for plotting functions to work.

by

A character vector of variables to summarise by. Defaults to c("reference_date", ".group").

Logical, should the observed data be linked to the posterior summary? This is useful for plotting the posterior against the observed data. Defaults to TRUE.

Value

A data.frame summarising the posterior samples.

Examples

fit <- enw_example("nowcast")
samples <- summary(fit, type = "nowcast_sample")
enw_summarise_samples(samples, probs = c(0.05, 0.5, 0.95))
#> Key: <reference_date, .group>
#>     reference_date .group report_date max_confirm location age_group confirm
#>             <IDat>  <num>      <IDat>       <int>   <fctr>    <fctr>   <int>
#>  1:     2021-08-03      1  2021-08-22         149       DE       00+     149
#>  2:     2021-08-04      1  2021-08-22         166       DE       00+     166
#>  3:     2021-08-05      1  2021-08-22         133       DE       00+     133
#>  4:     2021-08-06      1  2021-08-22         137       DE       00+     137
#>  5:     2021-08-07      1  2021-08-22         139       DE       00+     139
#>  6:     2021-08-08      1  2021-08-22          97       DE       00+      97
#>  7:     2021-08-09      1  2021-08-22          58       DE       00+      58
#>  8:     2021-08-10      1  2021-08-22         175       DE       00+     175
#>  9:     2021-08-11      1  2021-08-22         233       DE       00+     233
#> 10:     2021-08-12      1  2021-08-22         237       DE       00+     237
#> 11:     2021-08-13      1  2021-08-22         204       DE       00+     204
#> 12:     2021-08-14      1  2021-08-22         189       DE       00+     189
#> 13:     2021-08-15      1  2021-08-22         125       DE       00+     125
#> 14:     2021-08-16      1  2021-08-22          98       DE       00+      98
#> 15:     2021-08-17      1  2021-08-22         242       DE       00+     242
#> 16:     2021-08-18      1  2021-08-22         223       DE       00+     223
#> 17:     2021-08-19      1  2021-08-22         202       DE       00+     202
#> 18:     2021-08-20      1  2021-08-22         171       DE       00+     171
#> 19:     2021-08-21      1  2021-08-22         112       DE       00+     112
#> 20:     2021-08-22      1  2021-08-22          45       DE       00+      45
#>     reference_date .group report_date max_confirm location age_group confirm
#>     cum_prop_reported delay prop_reported    mean median         sd     mad
#>                 <num> <num>         <num>   <num>  <num>      <num>   <num>
#>  1:                 1    19   0.000000000 149.000    149   0.000000  0.0000
#>  2:                 1    18   0.000000000 167.426    167   1.316912  1.4826
#>  3:                 1    17   0.000000000 135.812    136   1.867121  1.4826
#>  4:                 1    16   0.000000000 141.255    141   2.341679  2.2239
#>  5:                 1    15   0.007194245 145.884    146   3.085460  2.9652
#>  6:                 1    14   0.000000000 103.681    103   3.072243  2.9652
#>  7:                 1    13   0.000000000  62.762     62   2.461588  1.4826
#>  8:                 1    12   0.000000000 185.138    185   3.827742  4.4478
#>  9:                 1    11   0.000000000 255.903    255   6.410514  5.9304
#> 10:                 1    10   0.004219409 267.488    267   7.975931  7.4130
#> 11:                 1     9   0.000000000 236.164    236   8.459235  8.8956
#> 12:                 1     8   0.015873016 230.867    230  10.092332 10.3782
#> 13:                 1     7   0.040000000 165.026    165  10.254095 10.3782
#> 14:                 1     6   0.010204082 129.307    128   8.532969  8.8956
#> 15:                 1     5   0.012396694 292.749    292  11.792076 11.8608
#> 16:                 1     4   0.017937220 293.296    292  15.992941 14.8260
#> 17:                 1     3   0.019801980 291.404    290  19.436887 19.2738
#> 18:                 1     2   0.070175439 295.703    292  28.861250 28.1694
#> 19:                 1     1   0.383928571 309.456    304  51.295236 47.4432
#> 20:                 1     0   1.000000000 381.243    371 103.890978 96.3690
#>     cum_prop_reported delay prop_reported    mean median         sd     mad
#>         q5   q50    q95
#>      <num> <num>  <num>
#>  1: 149.00   149 149.00
#>  2: 166.00   167 170.00
#>  3: 133.00   136 139.00
#>  4: 138.00   141 145.00
#>  5: 141.00   146 151.05
#>  6:  99.00   103 109.00
#>  7:  59.00    62  67.00
#>  8: 180.00   185 192.00
#>  9: 246.00   255 267.00
#> 10: 255.00   267 281.00
#> 11: 223.00   236 252.00
#> 12: 216.00   230 249.00
#> 13: 149.95   165 183.00
#> 14: 116.00   128 144.05
#> 15: 275.00   292 313.00
#> 16: 270.00   292 320.00
#> 17: 263.00   290 325.00
#> 18: 254.95   292 348.00
#> 19: 237.00   304 406.00
#> 20: 240.85   371 569.05
#>         q5   q50    q95